Exam Calculus of Variations and Optimal Control 2014-15

Date	$:$	$27-01-2015$
Place	$:$	5161.0165
Time	$:$	$14.00-17.00$

The exam is OPEN BOOK; you can use all your books/papers/notes. You are supposed to provide arguments to all your answers, and to explcitly refer to theorems/propositions whenever you use them.

1. Consider the scalar system

$$
\dot{x}=x+u, \quad x(0)=x_{0}
$$

The aim is to minimize the cost criterion
$\int_{0}^{2}\left[-2 x(t)+3 u(t)+\alpha u^{2}(t)\right] d t$
(a) Determine the Hamilton function of the Minimum Principle, and derive the differential equation and boundary condition(s) for the co-state p.
(b) Show that the evolution of the co-state is given by

$$
p(t)=-2 e^{(2-t)}+2, \quad t \in[0,2]
$$

(c) Take $\alpha=\frac{1}{2}$, and determine for this case the optimal input $u:[0,2] \rightarrow \mathbb{R}$.
(d) Now consider the case $\alpha=0$, and moreover assume that u satisfies the constraints $0 \leq u \leq 2$. Determine the optimal input function $u:[0,2] \rightarrow \mathbb{R}$.
2. Consider the scalar system

$$
\dot{x}=-x+u, \quad x(0)=x_{0},
$$

together with the cost criterion
$\int_{0}^{1}\left[(x(t)-c)^{2}+u^{2}(t)\right] d t$
for a certain constant c.
(a) Take $c=0$, and solve the optimal control problem by dynamic programming.
(b) Take $c=1$. Determine the Hamilton-Jacobi-Bellman equation in the (unknown) value function $V(x, t)$. Take a candidate value function of the form
$V(x, t)=p(t) x^{2}+q(t) x+r(t)$
for certain function p, q, r. Argue, without going into computational details, how this will lead to a solution of the optimal control problem.
3. Consider the system
$\frac{d}{d t} y=\alpha y-u, \quad y(0)=y_{0}$,
with $\alpha \in \mathbb{R}$ an unknown parameter.
(a) Show that the feedback $u=k y$ for $k \in \mathbb{R}$ sufficiently large renders the equilibrium $y=0$ asymptotically stable.

Since α is unknown we do not know how large we should take k. To solve this problem we let k to be determined by the following dynamics
$\frac{d}{d t} k=y^{2}-k, \quad k(0)=k_{0}$,
for some k_{0}. Here the term y^{2} ensures that k grows if y^{2} is large, while $-k$ prohibits too large values of k
(b) By substituting $u=k y$ in the differential equation (1), one obtains the following coupled differential equations in y and k :

$$
\begin{align*}
\frac{d}{d t} y & =\alpha y-k y \tag{3}\\
\frac{d}{d t} k & =y^{2}-k
\end{align*}
$$

Determine all equilibria (\bar{y}, \bar{k}) of (3). Make a distinction between the case $\alpha>0$ and $\alpha \leq 0$.
(c) Investigate by means of linearization the stability of all equilibria found under (a). Distinguish again between the case $\alpha>0$ and $\alpha \leq 0$.
(d) Take $\alpha<0$. Show by means of a suitable Lyapunov function that for all initial values $\left(y_{0}, k_{0}\right)$:
$\lim _{t \rightarrow \infty}(y(t), k(t))=(0,0)$
(e) Does (4) remain too hold for the case $\alpha=0$?
4. Variational calculus can be extended to functions of more than one independent variable. In particular it can be used for functions depending on time $t \in \mathbb{R}$ and on a spatial variable $z \in \mathbb{R}$.
Consider thus functions
$y:\left[t_{1}, t_{2}\right] \times\left[z_{1}, z_{2}\right] \rightarrow \mathbb{R}$,
also denoted by $y(t, z)$. Denote the partial derivative of $y(t, z)$ with respect to t by $y_{t}(t, z)$, and the partial derivative with respect to z by $y_{z}(t, z)$. Now consider the problem of minimizing the expression (for some function L)

$$
\int_{t_{1}}^{t_{2}} \int_{z_{1}}^{z_{2}} L\left(y(t, z), y_{t}(t, z), y_{z}(t, z)\right) d z d t
$$

over all functions $y:\left[t_{1}, t_{2}\right] \times\left[z_{1}, z_{2}\right] \rightarrow \mathbb{R}$ satisfying

$$
\begin{array}{ll}
y\left(t_{1}, z\right)=a_{1}, y\left(t_{2}, z\right)=a_{2}, & z \in\left[z_{1}, z_{2}\right] \\
y\left(t, z_{1}\right)=b_{1}, y\left(t, z_{2}\right)=b_{2}, & t \in\left[t_{1}, t_{2}\right]
\end{array}
$$

(a) Show that the Euler-Lagrange equation for this case is given as the partial differential equation

$$
\frac{\partial L}{\partial y}-\frac{d}{d t} \frac{\partial L}{\partial y_{t}}-\frac{d}{d z} \frac{\partial L}{\partial y_{z}}=0, \quad t \in\left[t_{1}, t_{2}\right], z \in\left[z_{1}, z_{2}\right]
$$

(Hint: Define, similar to the case of one independent variable, variations $\alpha \delta y(t, z)$ with $\delta y(t, z)$ zero on the boundary of the rectangle $\left[t_{1}, t_{2}\right] \times\left[z_{1}, z_{2}\right]$. Now perform integration by parts both to the time variable t and to the spatial variable z.)
(b) Consider L given by

$$
L\left(y(t, z), y_{t}(t, z), y_{z}(t, z)\right)=\frac{1}{2}\left(y_{t}^{2}(t, z)-y_{z}^{2}(t, z)\right)
$$

(This is the Lagrangian - kinetic energy minus potential energy- of a vibrating longitudinal string.) Derive the Euler-Lagrange equations for this case.

Distribution of points: Total 100; Free 10,

1. a: 10, b: $5, \mathrm{c}: 5, \mathrm{~d}: 5$.
2. a: $10, \mathrm{~b}: 10$.
3. a: 5, b: $5, \mathrm{c}: 10, \mathrm{~d}: 5$, e: 5.
4. a: $10, \mathrm{~b}: 5$.
